

WIB工法

振動対策・液状化対策・不同沈下防止

Wave Impeding Barrier

技術審査証明: 第202204号 NETIS登録: KT-150072-A(公開終7)

高級住宅街で閑静な振動環境を創出

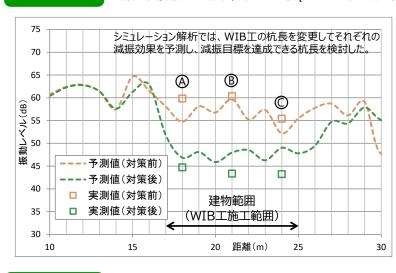
~ 戸建て住宅の地下鉄振動対策 ~

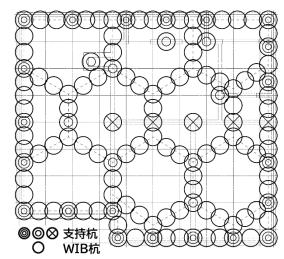
概要

戸建て住宅の建設地の近傍を地下鉄が走っており、その振動による住環境への影響が懸念された。住宅の新築に際して、その直下にWIB工を施工。地下から発生する振動に対して、WIB工法による振動対策を実施した。

·対策内容

※税抜金額。支持杭費用込み。m²当りの費用は対策深度によって物件ごとに変化します。

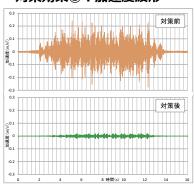

施工時期	施工期間	施工面積	総施工長	費用 [※]
(年月)	(日)	(m²)	(m)	(円/m²)
2019.04	5	69	250	49,100


·現場状況

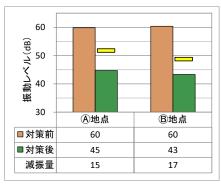
対象地は深度約10mまでN値10以下の関東ロームが堆積しており、振動が伝わりやすい地盤である。対策前の敷地内では、列車通過時にビリビリとした高周波振動が地下から伝わっていた。

設計

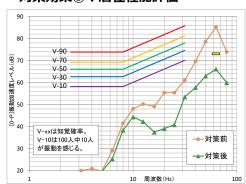
振動計測の結果に基づいて減振目標を設定し、その達成に必要なWIB工の諸元をシミュレーション解析により決定した。 建物の支持杭と振動対策用のWIB杭(いずれも地盤改良杭)を組み合わせた設計とした。



効果


対策後は地下鉄振動から発生する高周波振動が大幅に低減し、住宅内の居住性が改善された。地下から発生する振動に対するWIB工法の対策効果が実証された。(※図中の 🗕 はシミュレーション解析による予測値(対策後)を示す)

·対策効果①:加速度波形


地下鉄振動の加速度振幅が1/7程 度まで低減した。

・対策効果②:振動レベル

振動レベルが15~17dB低減し、体感しないレベルの振動となった。

·対策効果③:居住性能評価

家具のガタつき等の原因となる50~60Hzの振動が大幅に低減し、居住性が改善された。

